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We present numerical support for the hypothesis that macroscopic observables of dense granular media and
glasses can be evaluated from averages twecal blocked configurations: we construct the corresponding
measure for a class of finite-dimensional systems and compare its predictions for various observables with the
outcome of the out of equilibrium dynamics at large times. We discuss in detail the connection with the
effective temperatures that appear in out of equilibrium glass theories, as well as the relation between our
computation and those based on “inherent structure” arguments. A short version of this work has appeared in
Phys. Rev. Lett85, 5034(2000.
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I. INTRODUCTION nition of an entropy(in the glass literature a “complexity”’
Seqw, given by the logarithm of the number of blocked
Granular systemfl,2] involve many particles, so there is configurations of given volume, energy, etc., and its
a strong motivation to treat them with thermodynamic meth-corre- sponding densitysggyw=Sgqw/N. Associated with
ods. This approach is justified when one is able to identify ahis en- tropy are state variables such as “compactivity”
distribution that is left invariant by the dynami¢s.g., the  Xc3,=(d9/dV)Sgqn(V) and  “temperature” Tgg,
microcanonical ensembleand then assume that this distri- = (5/9E)S; 4 (E).
bution will be reached by the system, under suitable condi- Recent developments in glass theory, especially those re-
tions of “ergodicity.” Unfortunately, because energy is 10st 5164 to their out of equilibrium dynamics, have come to
through internal friction, and gained by a nonthermal Source, ity and support such a hypothesis—at least within mean-
such as tapping or shgarmg, the dynamical equations do nakig models(see below It is interesting to recall that there
leave the microcanonical or any other known ensemble Nhas been also an attempt to extend the compactivity concept

variant, Moreover, .jUSt as in the case of aging g!asses, th the dynamics of glass¢9]. The present paper addresses
compaction dynamics does not approach any stationary sta fe natural question of whether Edwards’ measure gives

on experimental time scales. . - . )
P Egood results for the compaction of finite dimensional, non

Consider a compaction experiment, in which we subject field models. Th It is that there i | f mod
granular system to gentle, periodic tapping. To keep the disT€an-field models. The result is that there s a class of mod-

cussion simple, we can assume that there is no gravity, arfgfs for which tr_]is is the case. A shorter version of this work
that there is a piston applying a constant pressure on th@as been published {ri0]. o
surface. The system compactifies very slofy; in practice The article is orgamlzed as follows: we first .dISCUSS. the
never reaching the most dense, optimal packing. At a givefature of the assumptionSec. IA, and the evidence in
long time, when the system has dengify), we may wishto ~ support coming from mean-field mode(Sec. 1B. In Sec.
measure for example the fraction of grains that are at relativeC we discuss in detail the checks already made with
distancer: the structure factor. This quantity being averagedLennard-Jones glasses, in the context of the so-called “in-
over all particles, one can expect it to be a reproducibléherent structures,” and their relation with the present ap-
observable. However, there is in principle no method to calproach.
culate the structure factor other than solving the dynamics. In Secs. Il and Ill we treat two finite-dimensional models
Some years ago Edwarfi4—6] proposed that one could which reproduce many of the features of glasses and granular
reproduce the observables attained dynamically by calculamedia, namely the Kob-Anders¢KA) [12] and Tetris[13]
ing the value they take in the usual equilibrium distributionmodels. We devise a method to count and calculate averages
at the corresponding volume, energy, dduat restricting the  over the blocked configurations, explicitly constructing in
sum to the “blocked” configurationslefined as those in this way Edwards’ measure. We compare expectation values
which every grain is unable to moV&,8]. In the case of the thus obtained with equilibrium values and with the outcome
previous paragraph, we would compute the structure factoof slow, aging dynamics and find very good agreement be-
in all the possibleblocked configurations of density(t),  tween the predictions of Edwards’ measure and aging dy-
and calculate the average. Thus, the only input from dynamramics.
ics would bep(t), apart from which the calculation is based In order to show that this agreement does not hold for all
on a statistical ensemble. forms of slow dynamics, we repeat the procedure in Sec. IV
This “Edwards ensemble” leads immediately to the defi- for another model exhibiting slow, logarithmic relaxations,
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the random field Ising modelRFIM) [14]. We conclude weight, but this weight is zeroln order that the stationary
with a discussion of our results in Sec. V. measure coincides with the microcanonical measure we need
some strongly specific properties for the dynamics: such is
_ the case of chaotitlamiltoniandynamics. The same can be
A. The assumption said about Edwards’ measure: that all blocked configurations

One possibility of making an assumption in the manner ofof a given energy have the same basin of attraction may be
Edwards would be to consider a fast quench, and then praguite generally true, but in order for Edwards’ measure to be
pose that the configuration reached has the macroscopielevant the combined basin of attraction of the typical con-
properties of the typical blocked configurations. This wouldfigurations should not vanish.
imply that the system stops at a density for which the number Starting from a random configuration the probability of
of blocked configurations is maximal. We do not follow this falling into a basin is proportional to its volume, so with a
path, as we will give sufficient evidence that generically tthuench we are not Samp]ing a typica| basin: rare bagrs
vast majority of the blocked configurations are much lessyonentially smaller in quantityof large (exponential vol-
compact than the one reached dynamically, even after abruge may dominate—and this is generally true for a quench

quenches. from equilibrium at any temperature. Using Edwards’ mea-

_ Our strategy here is instead to quench the system t0 &y is justified when for some reason one can consider that
situation of very weak but non-zero tapping, shearing o,

th | aqitation. In thi th tem k . ypical basins of a given level are also typically accessed: a
thermal agitation. 1n this way, the System keeps compac Ifyi/ery strong assumption that is generally not valid. The rea-
ing, albeit at a very slow rate. In this context, we consider

flat blocked f i ditioned to h %on this hypothesiéf true) is useful is that one can construct
atmeasure over blocked configuraticnaitioned to hav- averages over configurations defined by a local progésy

ing the energy andfor density of the dynamical situation ang blocked without having to know the basin of attraction
wish to reproduceThis means that we have given up trying which involves solving the dynamics '

to predict the dynamical energy or density by methods other There is still however a puzzling question: We are using

tha_lr_1htr1[e dyrf'l_amlc? |tself._th | bility should be rel i blocked configurations as a distribution for the dynamic situ-
_'hat configurations with 1ow mobiiity should b€ relevant ., ‘However, this seems odd, since we know that neither a
Ina l"’?mmed situation is rather evident, the strong hypOthes'?elaxing nor a gently driven system will stay in one of those
ther_e IIS that tfhe_ configurations drtzachgtd dzngmmallyt?eet dconfigurations. Here the example of the stationary measure
ypical onesol given energy and density. tad we restricted;,, dynamic systems is also instructive: we know that such a

averages to bIo_ck_eq conf_lguratlons hav_mig MACTOSCOPIC  easure can be constructed by considering only the periodic
observables coinciding with the dynamical ones, the con;:

) S ._trajectories, although the probability that the systenmis
struction would exactly, anq .trlv.lally, reproduce the dynamic eriodic trajectory is strictly zero. Somehow, these trajecto-
(raenseurlgt; ;:je df:r?;i:;]ztu?fci)cnedslt![gnéri]\?e a;ﬂ:ggf;g;:i;;iiﬁf les form a “skeleton” of the true distribution—and such
. : P L Fould also be the role of the blocked configurations in Ed-
tion, oth_er dynar_nl_cal_ observables is highly nontrivial. wards’ measure.

.At this point it Is important .to_ warn the reader about a Moreover, we will check that configurations with a small,
misconception. It goes like this: The system has at ever¥hough nonzero fraction of mobile particles yield the same
energy and density many blocked configurations. Now, WE,-tistics
know that in systems with many minin{éor example from '
mean-field glassesll the minima of given energy tend to
have the same values for macroscopic observables. Hence, it
is natural to assume that their basins of attraction are them- As mentioned above, the fact that dynamically accessed
selves also the same, and hence Edwards’ “flat averageblocked configurations are the typical ones does not follow
assumption is justified. from any general principle that we know, and, as we shall

To see the danger of such a reasoning, let us paraphrasesiée below, is indeed not always true.
in another context, in which it is clear that the conclusion is  In order to progress, one can exploit the analogy between
generically erroneous: consider a driven, macroscopic syshe settling of grains and powders, and the aging of glassy
tem [15] (e.g., fully developed turbulengéhermostated at systemq11] since in both cases, the system remains out of
energyE. By the same token, we would say: The system isequilibrium on all accessible time scales, and displays very
restricted to move in the energyE shell. Now, we know slow relaxations.
that almost all points in an energy shell of a macroscopic In the late eighties, Kirkpatriclet al. [16,17] recognized
system have in the thermodynamic limit the same values othat a class of mean-field models contains, although in a
macroscopic observabldse disregard symmetry breaking rather schematic way, the essentials of glassy phenomena.
cases Hence, it is natural to suppose that the dynamic stawhen the aging dynamics of these systems was solved ana-
tionary measure is also the same in all points: therefore thiytically, a feature that emerged was the existence of a tem-
stationary distribution is flat, i.e., microcanonical. peratureT g, for all the slow modegcorresponding to struc-

This is of course wrong: we know that generically the tural rearrangement$18,19.
stationary measure of a driven, thermostated system is domi- For the purposes of this pap€Fg,, can be defined by
nated by an ensemble of zero volume within the energy shelcomparing the random diffusion and the mobility between
Almost all points in the energy shell do have the sametwo widely separated timesandt,, of any particle or tracer

B. Solvable models
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in the aging glass. Surprisingly, one finds in all cases aretrized by {T,Ts.,t,) the final energyEy 1 is a reproduc-
Einstein relation ([r(t)—r(t,)]1%)=TayL &r(t)—r(tw))  ible quantity in the thermodynamic limit.
of], wherer is the position of the particle arfds a constant Suppose now we classify all thermal histories according
perturbing field, and the brackets denote average over realp the energyE of the blocked configuration reached at the
izations. While in an equilibrium system the fluctuation- end. Kobet al. then ask the following question: are all other
dissipation theorem guarantees that the rol@gf, is played  macroscopic observables fully determined Byor, other-
by the thermodynamic temperature, the appearance of suchsgse stated, is the effect of the whole histofy, T; ,t,,) com-
quantity out of equilibrium is by no means obvioU$;,, iS  pletely encoded ifE? For the macroscopic observables they
different from the external temperature, but it can be showrtonsidered, their answer is within numerical precision affir-
to have all other properties defining a true temperai®8.  mative. (In their work, they chose as macroscopic observ-
As it turned out, despite its very different origin, this tem- aples the spectrum of the energy Hessian, instead of the
perature matches exactly Edwards’ ideas. One can identify iBtructure factor as we do here
mean-field models all the energy mininithe blocked con- We can now discuss the relation of their approach and the
figurations in a gradient descent dynamjcand calculate present paper. On the one hand, because there is no direct
1/TEdW as the derivative of the Iogarithm of their number Samp"ng of typ|ca| Configurations of ener@ but a com-
with respect to energy. An explicit computation shows thatparison of configurations reached after different histories, the
Teqw coincides withTyy, obtained from the out of equilib-  procedure of Ref27] does not address the question of what
rium dynamics of the models aging in contact with an almosihe actual distribution is for giveE (unless, of course, one

zero temperature bafl20—23. Moreover, given the energy mayes extra assumption©ne could imagine a situation in
E(t) at long times, the value of any other macroscopic 0byyhich 4 small subset of blocked configurations of given en-
servf'ible IS also given by the f_Iat_ average over all k’,lt)Ckecfrgy contributes to the measure because they have a larger
qonflguratlons of energf(t). Within the Same approxima- paqin of attraction for every history. Indeed, we shall see
tion, one can ‘T"ISO tre.at'systems Fhat like 'granular mattel%\ter that the dynamics of the RFIM, while passing the test of
present a nonlinear friction and different kinds of energy

input, and the conclusions remain the sdr2@| despite the Kob et al, is not well reproduced 'by a flat Edwards’ mea-
fact that there is no thermal bath temperature. sure. What Ref[27] does suggest is that whatever the mea-

Edwards’ scenario then happens to be correct withirsure. it is insensitive to the details of the thermal history,
mean-field schemes and for very weak vibration or forcing Which only has the effect of specifyirig—two thermal his-

The problem that remains is to what extent it carries througtjoies finishing in the same energyyield the same values
to more realistic models. In this direction, there have bee or all the other macroscopic observables. The approaches

recent studie§27] of Lennard-Jones glass formers from the &€ cléarly complementary: the suggestion of the present
perspective of the so-called “inherent structure$28], work thqt Edwards measure gives good regults fqr_e_l slow
which suggest that whatever the measure for the slow d compaction would be of little use without the insensitivity of
namics, it is not sensitive to the details of the thermal(€ Measure on the history suggested in R&Tl.
history—see next subsection. Let us add that Kolet al. d.eflne a tempgraturfé for a

The path we follow her&l0] is to construct the Edwards Process T, Ty ,ty) by demanding thak obtained by a direct

measure explicitly in the case of representativen-mean- duench fromT* to zero temperature be equal B, -
field) systems, together with the corresponding entropy and his temperature is not equal (but may be an approxima-
expectation values of observables. We thus obtain resulféon of) the Edwards temperature which we calculate below.
that are clearly different from the equilibrium ones, and we

can compare both sets with those of the irreversible compac- Il. KA MODEL

tion dynamics. . . .
y The first model we consider is the so-called Kob-

Andersen(KA) model[12] that was first studied in the con-
text of mode-coupling theorigg0] as a finite dimensional
model exhibiting a divergence of the relaxation time at a
Let us discuss in detail the relation between the preserfinite value of the control parameténere the densiby this
approacH 10] with the one followed by Kolet al.[27] with divergence is due to the presence in this model of the forma-
Lennard-Jones glasses, later applied in the granular mattéion of “cages” around particles at high densitshe model

C. Differences and similarities with approaches
based on “inherent structures”

context in[29]. was indeed devised to reproduce the cage effect existing in
One can describe the work of Kat al. as follows: start-  supercooled liquids
ing from an equilibrated system at temperatiirabove the Though very schematic, it has then been shown to repro-

glass transition, the system is first quenched to a temperatutkice rather well several aspects of glagsds, like the ag-

T below the glass transition, where the system spends agirigg behavior with violation of FDT[32], and of granular

a timet,,, after which it is quenched again to zero tempera-compaction 33].

ture. (In some of the procedures there is no intermediate The simplicity of its definition and the fact that it is
stop:t,,=0.) The dynamics of the final quench being at zeronon-mean-field makes it a very good candidate to test Ed-
temperature, the system eventually lands in a blocked corwards’ ideas: in fact, the triviality of its Gibbs measure will
figuration of energyE. For each cooling protocol param- allow us to compare the numerical data obtained for the dy-
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namics_ gn_d for Edwards’ measure with the analytic results 0.1 Sow anneaiing -
for equilibrium. very slow annealing  ©
0.08 | equilibrium measure
A. Definition
The model is defined as a lattice gas on a three dimen- £ 0.08
sional lattice, with at most one particle per site. The dynami- e 0.04 |
cal rule is as follows: a particle can move to a neighboring
empty site, only if it has strictly less than neighbors in the 002 |
initial and in the final position. Following12], we takem
=4: this ensures that the system is still ergodic at low den- 0 L . . P
sities, while displaying a sharp increase in relaxation times at 0.75 0.8 0.85 0.9 0.95
a density well below 1. The dynamic rule guarantees that the p

equilibrium distribution is trivially simple since all the con-

figurations of a given density are equally probable: the FIG. 1. Parametric plot of the density of mobile particles versus
Hamiltonian is just O since no static interaction exists. the density, for the equilibrium measuata obtained by generat-

In order to mimic a compactiofor aging process with- ing at random configurations of a given density and measuring the

out gravity, we simulate a “piston” by creating and destroy- nu_mber of mgbilggarticlesaGnd during two compaction procedures
. . . - (with Au/At=10"" and 10°).
ing particles only on the topmost layésf a cubic lattice of
linear sizeL) with a chemical potentiak [31]. More pre-
cisely, each Monte Carlo sweep is divided in the following
steps:(i) for each of the sites of the topmost layer, add a
particle if the site is empty, and, if it is occupied, withdraw
the particle with probability expfBw). (i) Try to move
each particle, in random order, according to the dynamical The previously described Monte-Carlo procedure allows
rule. to produce equilibrium configurations, even if the dynamical
constraint is enforced, as long asis low enough. However,
B. Gibbs measure at densities close tp, (=0.88), the particle diffusion be-

. e I . comes extremely slow due to the kinetic constraints. In fact,
Since the Ham|lton|a_n is 0, the equilibriuger Gibbg the diffusion coefficient is well approximated by
measure corresponds simply to a flat measure over all con-

figurations, without taking into account the Qynamical con- D(p)w(pg_p)as, (5)
straint. Therefore, the relation between density and chemical
potential is with ¢=3.1[12]. The equilibrium withp>p is not reached
by compaction after extremely long times: if a chemical po-
_ 1 (1) tential u such thato(u)>py is applied, the system falls out
P 1+exp—Bu)’ of equilibrium. Moreover, the density obtained at long times
depends on the history: the slower the chemical potential is

Gibbs’ measure at any given density, by simply generating at
random configurations with fixed number of particles.

C. Nonequilibrium dynamics

and the exact equilibrium entropy density reads raised, the denser the system becofids.
_ We are here interested in this out of equilibrium dynam-
Sequil(P)==pINp=(1=p)in(1-p), 2) ics: we therefore perform a compression, starting from low

density, by raising the chemical potential up to a high value
p=3. Since the equilibrium density ai=3 is much larger
dSequi than the jamming densityy, aging and very slow compac-
o —Bu. (3)  tion ensue. We record the densitft), the density of mobile
P particlesp,(t), and the spatial structure functiagy,(r,t)
defined as the probability that two sites at distamcare

with in particular

In this model, the temperatureAlis irrelevant since it ap-

pears only as a factor of the chemical potential and we cafccupied. Since we work at finite sizes, aqd since particlle_s
set it to one throughout. are always added at the same layer, density heterogeneities

Besides, the equilibrium structure factor defined as th&l0 appear between the topmost layer and the rest of the box

probability that two sites at distanaeare both occupied is if the compression is too f.ast. To avoid any systematic error,
easily seen to be a constant we use a slow compressiotn{=10" MC sweeps for each

increase ofA x=0.01), and we measure the various quanti-
Uequir)=p?, >0. (4) ties in the center of the box only, where we checked that the
system is indeed homogeneous.
No correlations appear since the configurations are generated We show in Fig. 1 the parametric plpt,(t) versusp(t);
by putting particles at random on the lattice. It will therefore at short times and low density, it follows the equilibrium
be easy, as already mentioned, to compare small deviatiortsirve (obtained by generating at random configurations of
from gequi(r), a notoriously difficult task to do in glassy densityp and thus measuring the mean density of mobile
systems. Note that it is also easy to numerically samplgarticles for the Gibbs measureat low u indeed, the relax-
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0.015 . : e 0.03 ' ' p=082 o ]
001 |
~_ 0005}

0 L

gdyn(r) -p

-0.005

-0.01

-0.015 - - : : :
05 1 15 2 25 3 35

FIG. 2. Dynamic structure function obtained in a very slow 0.48
compression, at different times, i.e., different valuesugfat u tas,
=1.5 the system is still at equilibrium and the correlation function 0.44 L= %::;:j‘“* ,
is therefore equal tgqq,i1, but stronger and stronger deviations are M
observed ag is raised. ooe

Eorn,

9000000,

ation time of the system is smaller than the rate of increase of
u, SO the system has time to equilibrate. As the density ap-
proachesp, however, compaction slows down amg(t)
gets smaller. At large times the system is approaching ( 0.32
NngpmNO)-

We have also measured the dynamical structure function (b) Baux
Jayn(r,t), displayed in Fig. 2; induced and spontaneous dis-
p|acements were measured and Compard@ﬁ]’.7 and these FIG. 3. Thermodynamical properties of the auxiliary moda).

data will be displayed and used in Sec. Il F. Energy densitye,  vs inverse temperature, , at different particle
density p. (b) Entropy densitys,,, as obtained from thermody-

namic integration of the energy data.

We introduce an “auxiliary model” which will allow us Saux(00) = Sequilp) )
to define the Edwards measure for the KA model. In thiSsince the ||m|tﬂaux_>0 Corresponds to the equ“ibrium mea-
model particles have energy equal to one if the dynamic rulgyre. In Fig. 3 we show a subset of data concerning the
of the KA model allows them to move, and to zero Other'energy and entropy densities of the auxi”ary mod@he
wise. The Hamiltonian is therefore highly complicated, in- energy has been computed in the rapge[0.65,0.95 with
volving next-nearest neighbor interactions. We can howeveg step in density\ p=0.005 and for8,,,c[0,20] with step
introduce an auxiliary temperaturefl/,x associated to the Apg.  =0.1).
auxiliary energyE, . (equal to the number of particles that " \ve also evaluate the structure function of the auxiliary
are able to moveand perform a simulated annealing, at fixed model g, ,,(r, Bau,) Which is shown in Fig. 4 for a density
number of particles: at lowB,, all configurations are ,=0.87. It is clear here as well as in Fig. 3 that the limit
sampled uniformly, while, ag,.x grows, the sampling is g_ .« considered in the next subsection is already ap-
restricted to configurations with vanishing fraction of mov- proached forB,,,~5.
ing particles. The Monte Carlo procedure uses non—loca?

0 1 2 3 4 5 6

D. The auxiliary model

moves [accepted with a standard Metropolis probability 0.015 ' T Pu=05 e
min{1,exp( BauAEau}] which allow for an efficient sam- 001 | 1 — |
pling: these non-local moves have nothing to do with the true 12 -
dynamics of the original model, and therefore the auxiliary g 0005 ¢ 20 o T
model is not glassy. '

In this way, we obtain the equilibrium energy density of O or
the auxiliary model,e,,,(Baux:p) and its entropy density S -0005 |
Saux Baux:p) by thermodynamic integration: oo

Saux(ﬁauwp):SequiI(P)+,3auxeaux(,8au><ap) 0015

0.5 1 1.5 2 25 3 35
ﬁaux ’ ’
- 0 eaUX(Baux!p) dﬁauxl (6)
FIG. 4. Structure function obtained in the auxiliary model at

different values of the temperatufg,,, and for a densityp=0.87.
where we set The data forB,,,=>5, 10, and 20 are indistinguishable.
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07 0.015 | p=0870 —— ]
: ...................... 0.865 e
06 e 0.01 | 0.860 —=— 1
T N 0.855 -0
N o 0.005 f
Q 047 = :
3 | T o
w 03 3 0.005 |
02} i o
-0.01 |
04t
o , , , | , , -0.015 | , ‘ , ,
065 07 075 08 085 09 095 05 1 15 2 25 3 35
p

FIG. 5. Edwards entropy density of the Kob-Andersen model vs

FIG. 6. Edwards structure functia@q,/(r) obtained as limit of

density (full curve). For comparison we also show the equilibrium the Gaux(r, Baud for Baux—. As the density increases the devia-
entropy (dashed curve At high enough density the curves are in- tion from geqy; gets less pronounced.
distinguishable, and join exactly only at=1. The slope of the

tangent tosgqu(p) for a genericp allows to extractlTgy,(p) from
the relationTgqu(p) (dSgqw/dp) = dSequir/dp.

E. Edwards’ measure

Ilm gaux(rvﬁaux) (12)

Baux—>

Jedwll) =

and displayed in Fig. 6 for various densities.
Two remarks are in order.

To evaluate the observables with Edwards’ measure, i.e., As the density approaches 1, almost all particles become

the set of configurations where all particles are unable t§qcked even for Gibbs’
move, we consider now the limg,,,— o of the observables

measure; more precisely,

,1P5PP°=0; thus, Edwards’ and Gibbs’ measures get

computed in the auxiliary model. For example, the Ed""""rd%loser, which is seen in Fig. 5 by the fact that the curves for

entropy is then obtained as

Seaw(p)=lim  s(Baux,p)
Baux—
:SequiI(P)_ fo eaUX(ﬂéux!p) dﬁ;ux, (8)
since
lim ﬁauxeaux(ﬂauwp)zo- 9
Baux—®

In Fig. 5 we plot the Edwards and the equilibrium entropy as

a function of the particle density.

Comparison of Fig. 5 with Fig. 1 shows that the most
typical blocked configurationsp(~0.75) are irrelevant as far

as the compaction dynamics is concerned.

Since the relation between chemical potential, tempera-

ture and entropy density at equilibrium is given by ES8),
the natural definition for Edwards’ temperature is

TE(}W:_i dsEdW(p) .
mo dp

However we work here at fixed density for Edwards’ mea-

sure, and we therefore compute

dsequiI(P)
dp
Teaw™ dseaw(p) |
dp

Similarly,
Oeaw(r), is obtained as

(10

(11

Sequil @Ndsgqy get very close, and lig, 1 Tegw= Taipbs=1-
Similarly, ggqu(r) deviates less frongeq,i asp increases,
as is shown in Fig. 6.

Edwards’ measure is precisely defined as a sampling over
configurations with vanishing fraction of mobile particles.
We mention here for completeness the straightforward gen-
eralization of Edwards’ measures as the set of configurations
with fraction of mobile particlesmaller thane (cf. the qua-
sistates of[23]); we then can use the knowledge of
€auxBaux.p) to defineB€ as the value of the auxiliary tem-
perature such that, (8¢, p) =€, and thus define

SEdw(p) =S(Baux=Bp)

= SequiI(P) +ep— foﬁéeaux(lgauxap) dBaux-
(13

It is clear thalsédw= Sequil» While sgdw= Seqw- We can also
measure the structure factag$(r)=g(r,8°).

F. Comparing the measures

We are now in a position to compare the long-time results
of the out of equilibrium dynamics with those obtained with
the different measures. Section 11 C has already made clear
that the equilibrium measure is not able to describe these
results. Figure 7 shows a plot of the mobility

NS(r3t) - ri(ty)

1 3
D

the Edwards measure structure function,obtained by the application of random forces to the particles

(see[32] for detaily, vs the mean square displacement
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flat, the system has developed during its dynamical evolution

some structures, which seem to be reproduced rather well by
Oeaw(r)- Note that using the generalized Edwards’ measures

does not improve the agreement in a clear-cut way because
of the rather large error bars on the dynamical data.

To summarize, during the compaction, the system falls
out of equilibrium at high density, and is therefore no more
described by the equilibrium measure. It turns out that Ed-
wards’ measure, constructed by a flat sampling of the
blocked configurations at the dynamically reached density,
reproduces the physical quantities measured at large times,
and in particular predicts the correct value for the dynamical
temperature.

FIG. 7. Einstein relation in the Kob-Andersen model: plot of the
mobility x(t,t,) vs the mean-square displacemdit,t,) (data
shown as circles The slope of the full straight line corresponds to
the equilibrium temperatureT(=1), and the slope of the dashed
one to Edwards’ prescription obtained from Fig. 5 @aft,)

Ill. TETRIS MODEL

In this section we extend the results obtained for the KA
model to another class of models, the so-called Tetris model

=0.848.

3

1 N
B(t,tw) =3y 2 2 (O -rkt)]?), (19

=1

testing in the compaction data the existence of a dynamic
temperatureT gy, [32]. (N is the number of particles aral

(TM) [13]. We proceed as before by constructing explicitly
Edwards’ and Gibbs’ measures, together with the corre-
sponding entropy and expectation values of some observ-
ables, and comparing both sets of data with those obtained
with an irreversible compaction dynamics. Notice that in this
ase the equilibrium measure is by no means trivial and it

as to be computed numerically, using an auxiliary model as
for the construction of Edwards’ measure.

runs over the spatial dimension©ne first remarks the ex-
istence of a dynamical temperatufg,,. Furthermore the o
agreement betweeT,,, and Tggq,, obtained from the A. Model definition
blocked configurations as in Fig. 5, for the density at which The essential ingredient of the TM3] is the geometrical
the dynamical measurement were made, is clearly excellenfrustration that for instance in granular packings is due to
In Fig. 8 we plot the long-time dynamicalyyq(r,t), the  excluded volume effects arising from different shapes of the
equilibrium gequi(r) = p?, and the Edwardsyeq,(r) struc-  particles. This geometrical feature is captured in this class of
ture factors, for the same densjiy-0.87. Whilegeq,i(r) is lattice models where all the basic properties are brought by

0.015

the particles and no assumptions are made on the environ-

Gibbs - ment(lattice). The interactions are not spatially quenched but
001 | D'i,ﬂ‘;"g'igg - are determined in a self-consistent way by the local arrange-
ments of the particles. It is worth noticing how in this class
o 0005 ¢ of models the origins of the randomness and of the frustra-
< R tion coincide because both are given in terms of the particle
= or | properties.
O 0.005 | S Despite the simplicity of their definition, these systems
are able to reproduce many general features of granular me-
-0.01 4 dia: the very slow density compactiph3], segregation phe-
0015 nomena[35], dilatancy propertie$36] as well as memory

05 1 15 2 25 3 35 [37] and aging 38,34
r Let us recall briefly the definition of the model, which
) Iy Lo _includes, like in the real computer garfietris, a rich variety
FIG. 8. Structure f.unCt'ong(r) P at dens'typ =087 com- shapes and sizes. On a lattice each particle can be sche-
puted with the equilibrium, Edwards’ and dynamical measure of the

Kob-Andersen model. The three sets of data come from indepenr:natlzed in general as a cross with 4 ar(irs general the

dent Monte Carlo simulations. The dynamic structure functionnumber of arms is equal to the coordination number of the

(circles is obtained after a very slow compression by raising thelatt'ce) of dlffergnt Ieng'ths, C'hosen In a random Way. An
chemical potential fromu=1 to x=3 with an annealing rate of _example of particle configuration on a square lattice is shown
107 Monte Carlo sweeps. The Edwards’ structure funciopen " Fig. 9. _ _

squaresis obtained from the auxiliary model. Although the equi-  1he interactions among the particles obey the general rule
librium value ofg(r) — p? is exactly 0, we also obtain it by a Monte that one cannot have superpositions. For instance one has to
Carlo simulation(full square$ in order to show that the difference Check that for two nearest-neighbor particles the sum of the
in the short distance behavior is not an artifact of the numericaBrms oriented along the bond connecting the two particles is
simulation. The size of the typical error bar on dynamical data issmaller than the bond length. It turns out that in this way the
shown atr =3. interactions between the particles are not fixed once for all

051301-7
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FIG. 10. Two possible configurations of the Tetris model con-
sidered with the maximal densiy= pa,= 2/3.

T=0 (no violation of constraints allowedhe energy is pre-
cisely zero. The exploration of the configuration space can
be performed in two ways.

(1) Working at constant density by interchanging the po-

. ) _sitions of couples of particles. This procedure is used to com-
FIG. 9. Sketch of a local arrangement of particles in the Tetris,

model: each particle can be schematized in general as a cross _@gte E(B.p) ande(B,p) (energy density from which one
. | 1z | Wi e H
4 arms of different lengths, chosen in a random way, n compute the equilibrium entropy density by the expres

sion

but they depend on the complexity of the spatial configura, ”

it piedy g I Sequi(p) =Sequill B=2,p) = Sequill B=0,p) - fo e(B.p)dB.
The extreme generality of the model definition allows a (16

large variety of choices for the particles. While the original

model deals with simple rods, the fact that these rods cafor the choice made for the particles one has

arrange in an antiferromagneticlike configuration of density

1 has motivated the use of random shapes to avoid this path- Sequi B=0,0)=—pInp—(1—p)In(1—p)+pIn4,

ology. In this study, on the other side, we will use the so- (17)

called “T”-shaped particles defined in such a way that three

arms have length equal fal and the fourth one zero length. S , . . .
d sets the bond size on the square lattice. With this definitior\{\/h!Ch is easily obtained E)y counting the ““mber of ways in
. . which one can arrangeL“ particles of four different types
one has four types of particles corresponding to the fouE)n N=L2 sites:
possible orientation of the “T”s on a square lattice. Our (2) workin ,at constant chemical potential by addin
choice has the following advantages: on the one hand, ng 9 b A Dy 9

averaging over the disorder is needed: on the other hand, tﬁaepd removing particles. In this case the density fluctuates and
ohe measureg (B, ).

process of applying a chemical potential together for par- In both cases one can measure the particle-particle corre-
ticles of various sizes could produce a “filtering” effect that __. . . . P pa
lation function(equivalent to the void-void correlation func-

would dynamically lead to an artificially dense system with . ; .
only small particles. With the above given rules one cant'on) GequiF). Since, working at constapt the density fluc-

define the allowed configurations. One can easily realize hogegfas’ vgle hff"(vr(; _alvzv)ay_i gggfgg%ﬂasérfﬁgzgraeoE{:ﬁgjble
the maximal allowed density is equal #ax= 5 which cor- \i/th tgg tg\;/\j}gulljiffere%t >r’nlethods comparable. One canI then
responds to a number of possible configurations proportionaW P :

to the linear size of the latticé, (due to the possible trans- Compare the correlation function obtained at constant

lations and symmetri¢sFigure 10 shows two possible con- (which _corresponds to a certain average depsitith the .
figurations withp = py o, correlation function obtained working at constant density.

The results of both methods are equivalent.

Figures 11 and 12 report the results fe¢B,p) and
Sequil(p) as obtained from Eq16).

The equilibrium measure is obtained with an annealing Figure 13 reports the results f()(gequ“(r)—pz» for dif-
procedure. We can introduce a temperatlirel/8 associ- ferent values ofp. The correlation functiong) (gequii OF
ated with an energ§ defined as the total particle overlaps ggq, Or gqy,) actually display oscillations arounsf, whose
existing in a certain configuration. For each valueTobne  origin can be easily understood: if a particle occupies a site,
allows the configurations with a probability given By#E.  the exclusion rules decrease the probability that a neighbor-
Starting with a large temperature (a very smallB) one ing site will be occupied. We therefore plot in the figures
samples the allowed configurations by progressively decreag(g(r) — p?))? in order to show the exponential decay of the
ing T (increasingB). As T is reducedE decreases and only at correlations.

B. Equilibrium measure

051301-8



EDWARDS’' MEASURES: A THERMODYNAMIC. .. PHYSICAL REVIEW E63 051301

0.8

E(T, p)

<geqm| -p >

FIG. 11. e(B=1/T,p) for various values ofp. From top to

bottom the density decreases monotonically fregm0.6 to p FIG. 13.((Jequil(r) — p?))? for various values op. From top to
=0.1. bottom the density decreases monotonically frpm0.64 to p
=0.1.

C. Edwards’ measure

Edwards’ measure is obtained with an annealing procef[-ide mobility, we start with an annealir}g p_rocedure precisel_y
dure at fixed density. This means that one samples the cofféntical to the one used for the equilibrium measure. This
figurational space by interchanging the positions of couple@rocedure allows us to reach a starting configuration with a
of particles without violations of constraints. In this way one 9/Ven density and no constraints violated. At this stage we
is sampling the configurational space corresponding alreadgform a Monte Carlo procedure which exchanges the po-
to T=0. In order to select only the subset of configurations®ltions of couples of particles without violation of con-
contributing to the Edwards’ measure we introduce an auxStraints: this procedure accepts the non-local moves with a
iliary temperature T,,, (and the correspondingB,,, Standard Metropolis probability mib, expt-BandEau)

=1/T,,,) and, associated to it, an auxiliary energy,, which allow for an efficient sampling. These non-local

which, for each configuration, is equal to the number of mo.moves define an auxiliary dynamics which has nothing to do

bile particles, in the same way as for the KA model. A par_With the true dynamics of the original model, and therefore

ticle is defined as mobile if it can be moved according to théN€ auxiliary model is not glassy. .

dynamic rules of the original model. As for the equilibrium we have performed a certain set of
Let us describe in detail how the measurements are pefpeasureg. | h . h

formed. Since for each given density one is interested in the !N Particular we have measurél,(Baux.p), i-€., the

subset of the equilibrium configurations with a reduced pardecrease of the auxiliary energy at fixed density. In order to
do this one performs an annealing procedure increasing pro-

2 , ‘ ‘ , gressively B,.x and monitoring for each3,,, the corre-
sponding configurational energ¥, (Baux.p)- From this
measure one can compute the Edwards’ entropy density de-
fined by

15 ¢
Sedw(P) =Saux Baux=,p)

:Sequil(P)_ J:eaux(ﬁauxvp)dﬁauxv (18)

Sequil (p)

/ wheree, . Baux,p) IS the auxiliary Edwards’ energy density
’ . and we pmsequil(p):Saux(ﬁauxzovp)-
| Figure 14 reports the results feg4,(p) as obtained from
Eq. (18) compared withseqil(p) -
For the computation of the particle-particle correlation
Y 0 02 04 06 0.8 1 function we have to use a different strategy. Always starting
| ’ 0 ' ) from a configuration with a given density and no constraints
violated one performs a Monte Carlo procedure,£at,x
FIG. 12. Entropy density in equilibriurseq,(p) and, for ref-  fixed, which exchanges the positions of pairs of particles
erence, entropy density &, ,x=%. Sequi(p) goes to zero ap ~ without violation of constraints. Each single simulation uses
=2 p and B,ux @s input parameters. In practice one is trying to

o
[3)
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FIG. 14. Edwards’ entropy densitggqu(p), and equilibrium

entropy densitys,quil(p). Both go to zero ap= 2 FIG. 16. pyop VS p for two irreversible dynamics wittN=1,
M=1 andN=10,M=1. For reference is plotted the equilibrium

sample all the configuration of densipyand with a particle curve.

mobility defined byB,,x. In this context the Edwards’ pre- . . . . .

scription should correspond to the limi,,—. In this tem, at finiteM, is not at_JIe to approach Its maximum dens_|ty

way we have computef(gequ(r) — p?)) for several values and falls out of equilibrium. I_-|ere again the de_nsny_ at which

of B,,, and we report the results in Fig. 15. As one can se he number of blocked configurations is maximal is smaller

e . . han the one achieved by compaction.
the limit o s attain Ir f f the order . . . ; . .
ofeG Bau— s attained already oy, of the orde It is particularly interesting to notice that in the out-of-

equilibrium configurations visited during the irreversible dy-
namics the fraction of mobile particlgs,,, at fixed density
is systematically smaller than the corresponding value in
We now turn to the out of equilibrium dynamics of com- equilibrium. This suggests the possibility of distinguishing
paction, simulated by starting from an empty lattice and perbetween equilibrium and out-of-equilibrium configurations
forming N steps of attempted particle additions followed by by looking at the spatial organization of the particles in both
M steps of attempted particle diffusions. Figure 16 reportsases. We have then measured, during the compaction dy-
the results for the density increase and for the fraction ohamics, the particle-particle correlation function at fixed den-
mobiles particles as a function of the density fo=1, M sity. In the next section we shall compare these results with
=1 and N=10, M=1. While the limit N=fixed M — those obtained on the basis of the equilibrium and Edwards’
should coincide with the equilibrium, it is clear that the sys-measures.

D. Irreversible compaction dynamics

-1

10

E. Comparing different measures

We are now able, as for the KA model, to compare Gibbs’
and Edwards’ measures with the results of the out-of-
equilibrium dynamics at large times.

In Fig. 17 we plot the deviations of the particle-particle
correlation functions from the uncorrelated vajfe In par-
ticular we comparé(gayn(r) —p?))? obtained during the ir-
reversible compactionrN= 1, M = 1) with the corresponding
functions obtained with the equilibrium and Edwards’ mea-
sures. It is evident that the correlation function, as measured
during the irreversible compaction dynamics, is significantly
different from the one obtained with the equilibrium mea-
sure. On the other hand the correlation functions obtained
with Edwards’ measure are able to better describe what hap-
pens during the irreversible dynamics. In particular what is
observed is that the correlation length seems to be smaller
for configurations explored by the irreversible dynamics than

FIG. 15. ((Qeaw(r) — p2))? for p=0.58; Baux=1.2,4,6. The be- in the equilibrium configurations. This aspect is captured by
havior seems to saturate to a limit that should correspon@l,tg ~ Edwards’ measure which selects, the better the laggeyx,

—oo already forB,, of the order of 6. configurations with a reduced particle mobility. In practice

5

&

AL

o
E

2

<g(n- p*>

10°

051301-10



EDWARDS’' MEASURES: A THERMODYNAMIC. ..

G—© Equilibrium (p = 0.586)
3—+&1Equilibrium (p = 0.572)
&—= Dynanmics {p = 0.58)

&-—24 Edwards (p=0.58;8,,=6)

2_ 2
- P>

<g(r)

r (distance)

PHYSICAL REVIEW E63 051301

The strength of the ferromagnetic interactibnan be set
to 1, and the distribution of the random fieltis will be
taken as bimodah;= *+h,. At high temperature, the system
is in a paramagnetic phase; at low temperature and weak
magnetic field, there exists a ferromagnetic phase[14]).

The typical equilibrium configurations are therefore magne-
tized.

In the absence of random fields, the low temperature dy-
namics is the well known coarsening of domains of plus or
minus spins, whose typical size grows as a power of time. In
the case of the RFIM, the domain walls are pinned by the
field, and the dynamics proceeds by thermal activation. The
size of the domains therefore grows only logarithmically
with time. Moreover, the fact that thermal barriers are easier
to overcome at not too low temperatures induces a strong
dependence on the cooling rate. As above, we are interested
in the limit of low but nonzero temperatures.

In a large system, the long-time configurations obtained

FIG. 17. Comparison between the correlation functions obtainedlynamically are intertwined domains of “up” and “down”

with the equilibrium measure, the Edwards measyg, =6) and
the irreversible dynamicdN=1, M=1). In all cases the system is
considered at a density @f~=0.58.

one can summarize the problem as follows: given a certai
density, one can arrange the particles in different ways. Th
different configurations obtained in this way differ in the

spins having similar volumes, the global magnetization being
zero. This is quite different from the equilibrium configura-
tions at the same energy, which are magnetized. In fact, an
easy way to show that the long-time dynamical configura-
ions differ from the equilibrium ones is to look at the dis-
tribution of the magnetizationB(M) in both cases: at equi-
librium Pgq,i(M) is peaked aroundt M(T), with M(T)

particle mobility and this feature is reflected by the change in>0, while for the dynamics one obtains at any finite time for

the particle-particle correlation properties.
Also in this case, as in the KA example, it turns out that

P4yn(M) a single peak arounil =0: in this domain growth
dynamics, the system does not choose at any finite time be-

Edwards’ measure, constructed by a flat sampling of théween the two basins of attractions of the two ground states
blocked configurations, is able to reproduce the physical40].

guantities measured at large times. Investigations are cu

r- The dynamics proceed by thermal activation; therefore

rently running to check also in the Tetris model whether thethe long-time configurations are “blocked,” in the sense
temperature predicted with the Edwards’ approach coincid¢hat, at zero temperature, the system would be unable to es-

with the dynamical temperaturg,, as defined for the KA
model.

IV. THE THREE-DIMENSIONAL RANDOM FIELD ISING
MODEL AT LOW TEMPERATURE

In this section, we consider a case in which Edwards’

cape from them. The question in the present context is now
whether these “blocked configurations” are typical, i.e., if
their characteristics are well reproduced by a flat sampling of
all blocked configurations of the same energy. We have
therefore considered the corresponding auxiliary model, in
order to obtain this flat sampling.

Since we want to study the configurations at a given en-

ensemble does not give good results: the low temperaturgrgy, the auxiliary model has two terms: the first one is qua-

domain growth dynamics of a 3D Ising model in a weak

random magnetic field. This model has been applied in many,

different contexts[14], and in particular in relation with

glasseqd39]. The logarithmic relaxations it displays at low ¢

temperature, as well as the dependence on its thermal histo
(like the influence of the cooling ratean also induce com-
parisons with granular compaction.

The model is defined as usu&l=L2 Ising spins § =
+1) sitting on the sites of a regular lattice of linear size
interact ferromagnetically, in a random external field. The
Hamiltonian is

dratic, constraining the enerd{9) around a giverg,, and

e second one is the number of spins not aligned with their
local field, i.e., the number of spins that can flip without
hermal activation:

ry
2
Eaunx=B1| —J2 Si5— > hiss—Eo| +B.2 O(—sH)),
(i) i i
J (20)

where® is the Heavyside function, arld; =JX; jys; +h; is
the local field at sitd. The two auxiliary inverse tempera-

tures B8, and B, are used to perform an annealing, starting

H= _\]2 SiSj_Z hisi s
(i) i

(19

from a random initial configuration of high energy. We use a
single-spin flip Metropolis algorithm, accepting the moves
with probability min(1, exp(~AE,.)). Eg is taken negative

and slightly larger than the ground state mean endéigy

where the sum runs over pairs of nearest neighbors.

051301
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-4.6 - of 30° sping. While the dynamicalP4,,(M) consists in a
— B=3 single peak arountl =0 (getting narrower for larger system
e pea sizes, the distributionPg4,(M) is clearly bimodal, present-

<8 B= ] ing two peaks around two symmetric values of the magneti-

zation. The precise values of the peaks dependEgride-
creasing for increasingy: it is clear that, for too high values

of Ey, the configurations are less magnetizednd their
width depends on system size, getting narrower for larger

T systems.

It appears therefore that the configurations dominating

Edwards’ distribution arenagnetized (Note that a similar
result was obtained if41] for the low-energy metastable
states for a ferromagnet on random thin graphAs variance
with the previously studied model&kA and Tetrig, Ed-
wards’ distribution is therefore unable to describe the typical
configurations obtained dynamically.

FIG. 18. Energy versus time for the dynamics of the RFIM at  The example of the RFIM clearly underlines the differ-
inverse temperatures 3, 4, and 5. The energy decreases slower fonce with the inherent structure construction of Ketbal.
larger 8 because the dynamics is activated. For one given sampl©n the one hand, we have seen that Edwards’ measure does
E(t) would be a succession of plateaus; here the curves correspoitht reproduce the dynamic results. On the other hand, it is
to an average over 64 realizations of the random field. clear that different thermal histories, just as those considered

in [27], would yield domain configurations with essentially
energy than the long time dynamics configurati¢the evo- the same shapes if the end energy is the same, and zero
lution of the energy during the dynamical evolution is dis- magnetization, contrary to the typical configurations at that
played in Fig. 18 energy.

The first, simplest observable to look at is the distribution
of the magnetizationPgq4,(M), averaged over realizations V. “CHAOTICITY” PROPERTIES
of disorder. Typical results are displayed in Fig. 19, for the
P(M) obtained dynamica”y or with a Samp"ng of the We have shown two models for which Edwards’ con-
blocked configurations, for a system of326pins, and for struction gives a good approximation, and one for which it
Eo=—5.4IN and —5.2JN (we have also simulated systems does not. What is the distinguishing feature between them?
A distinction one can make, suggested by glass thg2y-
44,23, is obtained by studying their “chaoticity” properties
as follows: after aging for a timg, , two copies(cloneg are
made of the system, and allowed to evolve subsequently with
different realizations of the randomness in the updating pro-
cedure. The question is then whether the trajectories diverge
or not. Note that for this criterion to make sense, it should

0 50000 100000 150000 200000
t

0.08

0.06 -

Payn ™ always be applied at nonzerghough weak tapping or
s shearing.
T 0o The results summarized below seem to indicate that the
i condition of chaoticity is necessary. It is however not suffi-
i cient: Bouchaud’'s “trap model”’[18] is chaotic but its
o0z | '}.’j fluctuation-dissipation properties are not directly related to
i the density of statet5].
’Yﬁs For the three models discussed in this paper, we have
o P i oMy measured the normalized average ove@p(t) defined as
1 05 0 y 1 follows.
M For the KA model
FIG. 19. Histograms of the magnetization of the visited configu- 1
rations during the low temperature dynamiittdl line: Py, (M) for clone
L=20, ,3=4(? i.e., the engrgy per gtencj% the systé%n(is )between N 2. MO = (1) petondt)
—5.2 and—5.4; the finite width of the peak comes from the rela- Qtw(t) = P )
tively small size of the sampleand for Edwards’ measure &, p(0)—p=(0)
=—5.2 and —5.4 [dotted, dashed, long-dashed, and dot-dashed (21

lines: Pgquw(M) for L=20 and 8,=4 and 6; Eq=—5.4 corre- ) clones - _ ) )
sponds to the peaks at high]. The dynamics samples configu- Wheren; (respectivelyni°") is 1 if there is a particle on the
rations with low magnetization, while the typical blocked configu- Sitei for the original modelrespectively for the clongand
rations are magnetized. 0 if the site is empty.
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FIG. 20. Mean overla@tw(t) between two clones in the Tetris

model: the two clones are separated,atind evolve subsequently
with different noisethW(t) always decreases to zefihe slower
the largert,,), showing that the clones always diverge.

For the Tetris model

1 p(t) - peiondt)
D

Q, ()=

Pclone(t)2 (22

Pcionelt) — 4

whereA,; (1) is a function that gives one if on the sitg j()
the two copies present the same particles and zero otherwi

reason for the factors 4 in ER2).
For the RFIM

1
Q,(0={ 5 2 s ). (23

PHYSICAL REVIEW E63 051301

10°

Jeostatean,,  t=10) ——
")‘?‘q 1 L. Ra, 103 ®
N »&‘G\ o, AA 1 04 ...... .
Q_Q E\.Ek ‘A\ 105 ......... P
3 ‘ o u\\ A 10 P
€ -1 2 % % “a
& 10 ¢ o L} i
O ".‘ b V"’g A
"-Q‘ “‘\m "Al‘.‘
\ N s
102 t . . AN , |
10° 10" 10 10° 10* 10° 10° 107
t

FIG. 21. Same as Fig. 20 for the KA model.

figurations,” i.e., to calculate averages with Edwards’ mea-
sure. We have shown, for two representative finite-
dimensional models, that this measure gives different results
than the equilibrium measure, and is able to reproduce the
dynamical sampling of the out-of-equilibrium compaction
dynamics for various observables. The connection of Ed-
wards’ ensemble with the dynamical FDT temperature im-
mediately suggests experiments to check the validity of these
ideas, for example by studying diffusion and mobility of dif-
ferent tracer particles within driven granular media.

At present, the correspondence between Edwards’ distri-
bution and the long-time dynamics is at best checked but
does not follow from any known principle. Now that several
concrete examples have lent credibility to Edwards’ con-

S&ructi . .
; . o ruction, an effort to understand why it does in some cases
We have four types of particles in the system and this is th y

Svork and what is its range of validity has become worth-
while.

There remains the question of generalizing Edwards’
measures in two directions: by considering a fractor0 of
mobile particles, and by conditioning the flat measure to
more macroscopic observables in addition to density and

The brackets indicate an average over different realization§ ' Y-

of the randomness.
Figures 20 and 21 report the results f@[rw(t) for several

values oft,,, respectively for the Tetris and the KA model. It

Note added in proofRecently, we became aware of the
papers by Breyet al. [46] and Lefere and Dear{47] in
which Edwards’ measure is found for trapped one-
dimensional models.

is clear that in both cases the two copies of the system al-
ways tend to diverge. This is at variance with what happens
in the domain growth dynamidg4], and in particular for the
RFIM, where we have checked that the two copies retain a
finite overlap at all the times studied.
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